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COMMENT 

A note on the Berry phase for systems having one degree of 
freedom 

R Simon? and N Kumart 
f The Institute of Mathematical Science, CIT Campus, Madras 6001 13, India 
$ Department of Physics, Indian Institute of Science, Bangalore 560012, India 
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Abstract. A one-dimensional arbitrary system with quantum Hamiltonian H ( ( , p ^ )  is shown 
to acquire the ‘geometric’ phase y ( C )  = (1 /2h)  $, ( p o  dqo- qo dp,) under adiabatic trans- 
port q + q + q + qo( f )  and p + p +po(  t )  along a closed circuit C in the parameter space 
( qo( f ) ,  p 0 ( t ) ) .  The non-vanishing nature of this phase, despite only one degree of freedom 
( q ) ,  is due ultimately to the underlying non-Abelian Weyl group. A physical realisation 
in which this Berry phase results in a line spread is briefly discussed. 

The non-integrable geometric phase y( C )  acquired by a quantal system under adiabatic 
modification of its Hamiltonian along a closed circuit C in the parameter space has 
been the subject of intense discussion following its recent formulation by Berry [ 1,2]. 
To the best of our knowledge the work reported so far has often involved a parameter 
space of non-trivial topology. More specifically, most of the discussion is in terms of 
a two-level system modelled by a pseudospin-; in a pseudomagnetic field B and the 
parameters are the three components of the field. The Berry phase is then half the 
solid angle subtended by the parameter circuit C at the origin B = 0 ,  the point of 
degeneracy. The non-zero phase is a consequence of the non-Abelian nature of the 
underlying group SU(2). Inasmuch as a quantum system with one degree of freedom 
is essentially non-degenerate, the above picture is not applicable in the present case. 
Nevertheless, in this comment we demonstrate explicitly a non-vanishing Berry phase 
for an arbitrary ststem having just one degree of freedom and with a two-dimensional 
parameter space of trivial topology R2 that comes naturally with it. 

Consider an arbitrary system with one degree of freedom described by the quantum 
Hamiltonian H ( 4 ,  p * ) .  Let the system be modified adiabatically as q i, q + qo( t ) ,  p + 
p o ( t ) ,  where q O ( t ) , p o ( t )  are slowly varying c numbers and constitute the two- 
dimensional parameter space (a  plane). The modification can be effected by the unitary 
transformation: 

The Berry phase yn ( C )  acquired by the adiabatically evolving eigenstate 
1 4 n ( q O ( O , P o ( r ) ) )  is then given by [1I 
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(2) 
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Recalling that in the adiabatic limit (i.e. U’ d U / d t  + 0 )  

l4,(qo, P o ) )  = U(qo,  Po)I4,(0,0)) 

and factorising U ( q o ,  p o )  appropriately as 

(3)  

we get 

This completes the proof of our assertion. We note that this phase is the same for 
all eigenstates (and therefore for all states) and that it is independent of the nature of 
the Hamiltonian H(q^,p^).  It is also clear that the non-vanishing of this phase stems 
from the non-commutativity of 4 and p^ (i.e. the non-Abelian nature of the underlying 
Weyl group). That the Berry phase is the same for all states implies that the classical 
Hannay angle [3] is zero. This is also to be expected from the fact that the classical 
limit of the non-Abelian Weyl group is the Abelian translation group in a plane. For 
simplicity we have considered a system with one degree of freedom, but now it is clear 
that, if we had a system with n degrees of freedom and transported the system along 
a closed curve in the parameter space ( q o ( t ) , p o ( t ) )  which is now a 2n-dimensional 
phase space, the Berry phase will be related to the sum of the areas of the projected 
circuits in the planes (q;’( t ) ,  pt’ ( f ) ) ,  i = 1,2, .  . . , n. 

Now we turn to the question of physical realisability of the adiabatic transport 
4’ 4 + q o ( t )  andp^+p,+p^(t). Forachargedparticle (electron),p+p(t)  can beeffected 
by an externally applied vector potential A ( t ) .  Thus, consider an electron with a 
Hamiltonian p^*/2m + V ( 4 )  placed in a polarised electromagnetic radiation field 
(‘pump’). Also, let the atom be matrix bound (i.e. embedded in a lattice), so that its 
centre of mass executes an oscillatory nuclear motion, qo(r).  Then we have for the 
electronic Hamiltonian (in the adiabatic limit) 

Here A(  t )  is the vector potential and qo( 1 )  is the centre-of-mass nuclear coordinate, 
all referred to the laboratory frame. As usual, the spatial variation of A ( t )  over the 
atomic length scale is ignored (the dipole approximation). Thus we have p^( t )  = 
-( e / c ) A (  t ) .  To ensure adiabaticity, the frequencies associated with A(  t )  and qo( t )  
must be kept small compared with the electronic energy level spacings (the Born- 
Oppenheimer approximation). Now, when the frequency of radiation equals that of 
the centre-of-mass motion, we will have in general an elliptic circuit in the parameter 
space and a non-zero Berry phase per cycle. (This picture is, of course, true for any 
matrix bound atom or molecule, as in a molecular solid, say, or an ion trapped in an 
R F  trap or Paul trap. The latter is a good approximation to a nearly isotropic three- 
dimensional harmonic potential well for the single ion in question as is well known 
in the context of laser cooling when the natural line width of electronic transition is 
much less than the oscillator frequency [4].) I t  is clear that the number of circuit 
excursions per unit time is to be interpreted as a level shift for the electronic subsystem. 
The shift is, of course, the same for all eigenstates and hence undetectable in the 
absorption spectrum if the electronic subsystem is now probed (one must have a 
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transition to another reference system, not subject to the above shift). On the other 
hand, for the off-resonance case, i.e. the period of A(  1 )  not equal to that of qo( t ) ,  the 
phase change may not accumulate on the average (and  therefore no level shift), but 
it can still contribute to a line spread due to its asynchronous almost chaotic variation 
in time. This ‘geometric’ level width will scale as the square root of the intensity of 
the ‘pump’ radiation. Lineshape analysis is possible as in the case of a phase-modulated 
system. 

In conclusion, we have demonstrated the Berry phase for a system with one degree 
of freedom for which the classical Hannay angle is zero. Its possible manifestation as 
the linewidth of an electronic transition is noted for a matrix bound atom or an  ion 
trapped in a potential well. 
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